论文阅读笔记:“Progressive Relation Learning for Group Activity Recognition”

Progressive Relation Learning for Group Activity Recognition(cvpr2020)
核心思想
个体特征提取

首先使用目标跟踪器得到人的边界框。之后对其使用卷积得到Person CNN,生成的空间视觉表示
语义关系图建立

定义无向图
- 场景信息聚合
对于每个结点i,收集并聚合其所有邻居j的信息:

- 结点信息更新
对于每个结点i,使用刚刚得到的场景信息进行更新:

- 边信息更新
对于每条边,使用更新后的结点信息进行更新:

- 计算全局行为分数

因为在图中进行一次信息传播最多只能捕获成双的联系,为了编码高级别的交互,我们可以迭代m次进行图更新。
渐进关系门控
作者使用关系门控代理来探索一个自适应策略来选择与组行为相关的联系。决策过程可以用马尔可夫过程形式化表示。
渐进特征蒸馏
网络框架

实验结果
SOTA

- Post title:论文阅读笔记:“Progressive Relation Learning for Group Activity Recognition”
- Post author:sixwalter
- Create time:2023-08-05 11:14:26
- Post link:https://coelien.github.io/2023/08/05/paper-reading/paper_reading_047/
- Copyright Notice:All articles in this blog are licensed under BY-NC-SA unless stating additionally.
Comments