论文阅读笔记:“Position-Aware Participation-Contributed Temporal Dynamic Model for Group Activity Recognition”

Position-Aware Participation-Contributed Temporal Dynamic Model for Group Activity Recognition
主要思想
Who are the key participants?
作者认为关键参与者或者在整个过程中有稳定的运动,或者在某一时刻有显著的运动,如图所示:

网络框架

Long motion
计算每个个体的平均运动强度 (MI):


Flash motion
因为快速运动经常随着时间推移而改变,所以设置注意力权值,可以衡量每个个体快速运动的强度。
动作变化最快的人,一定对整体的行为起着关键性作用吗?
文章也说,不是所有快速运动都与群体行为或是其他人相联系,例如碰撞,摔倒等动作。所以某一个特定的快速运动的人往往在语义上与群体行为或是其他个体有着更强的联系。而对于这个联系的计算,作者引入了PIM模块。
PIM模块
- 同时考虑空间位置信息和特征相似度来对关系进行推理。


- Rx是特征交互函数:判断两个特征之间的相似性
- Rp是位置交互函数:基于位置信息衡量两个人之间交互的似然性
- K:场景中的所有人数


- d*是场景中距离最远的两人间的距离
AGG-LSTM
- 通过随时间变化的注意力,关注那些与群体行为关系密切的快速运动的人

论文首先将场景中的个体分为不同组,对于volleyball数据集来说,组即是每只队伍。对于第g个组,开始id和结束id计算公式如下:

划分为不同组之后,我们就可以捕获快速运动对于群体行为的关系。

:全部人的行为的隐变量表示 可以强调与组行为联系更紧密的个体行为,并抑制非重要个体行为

每个组的特征即可表示为LSTM输出的最后一个特征向量

- Post title:论文阅读笔记:“Position-Aware Participation-Contributed Temporal Dynamic Model for Group Activity Recognition”
- Post author:sixwalter
- Create time:2023-08-05 11:14:26
- Post link:https://coelien.github.io/2023/08/05/paper-reading/paper_reading_058/
- Copyright Notice:All articles in this blog are licensed under BY-NC-SA unless stating additionally.
Comments